The linear GMM model with singular covariance matrix due to the elimination of a nuisance parameter
نویسنده
چکیده
When in a linear GMM model nuisance parameters are eliminated by multiplying the moment conditions by a projection matrix, the covariance matrix of the model, the inverse of which is typically used to construct an efficient GMM estimator, turns out to be singular and thus cannot be inverted. However, one can show that the generalized inverse can be used instead to produce an efficient estimator. Various other matrices in place of the projection matrix do the same job, i.e., they eliminate the nuisance parameters. The relations between those matrices with respect to the efficiency of the resulting estimators are investigated.
منابع مشابه
Admissibility analysis for discrete-time singular systems with time-varying delays by adopting the state-space Takagi-Sugeno fuzzy model
This paper is pertained with the problem of admissibility analysis of uncertain discrete-time nonlinear singular systems by adopting the state-space Takagi-Sugeno fuzzy model with time-delays and norm-bounded parameter uncertainties. Lyapunov Krasovskii functionals are constructed to obtain delay-dependent stability condition in terms of linear matrix inequalities, which is dependent on the low...
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملLocation Reparameterization and Default Priors for Statistical Analysis
This paper develops default priors for Bayesian analysis that reproduce familiar frequentist and Bayesian analyses for models that are exponential or location. For the vector parameter case there is an information adjustment that avoids the Bayesian marginalization paradoxes and properly targets the prior on the parameter of interest thus adjusting for any complicating nonlinearity the details ...
متن کاملSingular constrained linear systems
In the linear system Ax = b the points x are sometimes constrained to lie in a given subspace S of column space of A. Drazin inverse for any singular or nonsingular matrix, exist and is unique. In this paper, the singular consistent or inconsistent constrained linear systems are introduced and the effect of Drazin inverse in solving such systems is investigated. Constrained linear system arise ...
متن کاملBartlett-type adjustments for hypothesis testing in linear models with general error covariance matrices
Consider the problem of testing a linear hypothesis of regression coefficients in a general linear regression model with an error term having a covariance matrix involving several nuisance parameters. Then, the Bartlett-type adjustments of the Wald, Score, and modified Likelihood Ratio tests are derived for general consistent estimators of the unknown nuisance parameter. The adjusted test stati...
متن کامل